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Abstract:  This paper analyzes the heat transfer of a two layered rotatory fluid flow in a horizontal channel under the action of 

an applied magnetic and electric fields. The fluid in region one is porous of Darcy-Forchheimer type while the 

fluid in region two is non porous. The fluid flow is unsteady and a magnetic field is applied perpendicular to the 

plates. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous 

insulating plates. The governing equations have been reduced to non-linear coupled ordinary differential equations 

by means of perturbation technique using two term series, after which Adomian Decomposition Method (ADM) 

was employed to solve the equations. The results are presented in graphical and tabular forms to illustrate the 

effects of the heat transfer characteristics and their dependence on the governing parameters. It is observed that as 

the Coriolis forces become stronger, the temperature decreases in both fluid regions. Furthermore, it is noticed that 

the temperature in the two regions diminishes with an increase in the porosity parameter. It is also seen that an 

increase in the Hartmann number causes decrease in the primary and secondary velocities profile. 
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Introduction 

The magnetohydrodynamic MHD fluid system through 

parallel plates in a rotating medium has received the attention 

of many researchers due to its importance in the design of 

MHD generators and accelerators, geo-physics, the 

underground water energy storage systems, nuclear reactors, 

soil sciences, astrophysics. In recent years, many researchers 

have paid their attentions on the flow in a rotating system due 

to its diverse applications in many branches of science and 

technology. Most of the problems relating to astrophysics, 

geophysical fluid dynamics and aeronautics, petroleum 

industry and industrial applications etc, involve multi-layered 

fluid flow situations. Often, in the petroleum industry as well 

as in engineering and technological fields, a stratified two-

phase or two layered fluid flow occurs. Transportation and 

extraction of the products of oil are other obvious 

applications. The results of multi-layered fluid flow studies 

are useful in understanding the effect of the presence of a slag 

layer on heat transfer characteristics of a coal fired rotating 

MHD generator, flow meters, in nuclear reactor and in space 

craft technology, etc Also, rotating flows are encountered in 

many industrial applications, such as in liquid metals, metal 

working process, geothermal energy extracts and many other 

applications.  

The study of MHD flows through porous media has been 

motivated by its immense importance and hence soliciting 

continuous interest from researchers. Many authors have 

focused on the theoretical/experimental investigations of 

hydromagnetic flows in a rotating environment, because of 

their occurrence in several natural phenomena that are directly 

governed by the actions of the Coriolis forces and their 

application in various technological situations. (Ingham and 

Pop (2005), Nield and Bejan (2006)) have studied transport 

phenomena in porous media. It is worth noting that the 

Coriolis forces are comparable in magnitude and these 

Coriolis forces induce a secondary flow in the fluid, (Holton 

(1965), Batchelor (1967) and Gupta (1972)). Chauhan and 

Kumar (2009) studied the effects of slip conditions on fully 

developed forced convection in a circular channel filled with a 

highly porous medium saturated with a rarefied gas and 

uniform wall surface heat flux, using Darcy extended 

Brinkman-Forchheimer model. Considerable attention has 

been given to the study of an unsteady magnetohydrodynamic 

flow, heat transfer and their response due to the imposed 

oscillations/impulsive motion of a boundary or boundary 

temperature under the presence of an external magnetic field. 

Despite these studies, the effects of unsteady two phase fluid 

flows through horizontal channels received much less 

attention in the literature. The unsteady hydromagnetic flow 

of electrically conducting two phase fluid flow in a rotating 

region over the porous boundaries gained significant 

theoretical and practical importance due to their applications 

in the petroleum industry, geophysical fluid dynamics, plasma 

physics, magnetohydrodynamics and in many such areas 

involving multi-layered fluid flows. These flows seem to be 

important and play interesting roles in the flow pattern as 

most of the practical problems dealing with immiscible fluids 

are unsteady in nature. 

 Also, in many practical problems, it is preferable to consider 

both immiscible fluids as electrically conducting, where one 

of which is highly electrically conducting compared to the 

other. The fluid of low electrical conductivity compared to the 

other is functional to reduce the power required to pump the 

fluid in MHD pumps and flow meters. For quite some years, 

emphasis has been made in research studies of two-layered 

fluid flows by several authors, notable amongst them are 

Walin (1969), Packham and Shail (1971), Debnath and Basu 

(1975), Michiyoshi et al. (1977) that studied unsteady two 

layered fluid flows. Umavathi et al (2010) examined 

Magnetohydrodynamics poiseuille-coutte flow and heat 

transfer in an inclined channel in which one region was of a 

conducting fluid and region two non-conducting fluid. Abdul 

Mateen (2013) has studied the magnetohydrodynamic flow 

and transient magnetohydrodynamic flow of two immiscible 

fluids through a horizontal channel. Ramachandra and Balaji 

(2014) had investigated MHD two-fluid flow and heat transfer 

between two inclined parallel plates in a rotating system and 

reported that the temperature distribution decreased as the 

rotation parameter increased. The unsteady radiative and 

MHD free convective two immiscible fluid flows through in a 

horizontal channel was investigated by Dada et al (2014) 

using the regular perturbation method and concluded that as 

the thermal radiation from the wall temperature decreased, the 

temperature profiles and thermal boundary layers increased.  

Furthermore, Adeniyan and Abioye (2016) presented mixed 

convection radiating steady flow and heat transfer in a vertical 

channel partially filled with Darcy-Forcheimmer porous 

substrate using Adomian Decomposition method. The effects 
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of coriolis force was rendered insignificant. Consequently, 

Raju and Rao (2016) studied an unsteady two-layered fluid 

flow of conducting fluids in parallel porous plates under 

transverse magnetic field in a rotating system. However, 

effects of the non-linear Darcy-Forcheimmer porosity was not 

considered in the study for simplicity. In the present paper, 

magnetohydrodynamic (MHD) heat transfer in a two-layered 

flow of conducting Darcy-Forcheimmer porous fluids through 

a parallel porous plates in a rotating system in presence of an 

applied magnetic and electric fields is investigated 

theoretically. The flow is driven by a constant common 

pressure gradient in the channel bounded by two parallel 

porous plates. 

 

Mathematical formulation of problem 

 
Fig. 1: Schematic diagram of the problem 

 

The study considered two layered unsteady MHD fluid flow 

in a horizontal channel comprising of two infinite parallel 

porous plates with  suction (𝑉𝑜) constant and normal to these 

directions 𝑦 = ℎ1and 𝑦 = −ℎ2 . The system is rotated with an 

angular velocity Ω in anti-clockwise direction about the 𝑦-

axis perpendicular to the plates. The fluids in Region I and 

Region II respectively are in the upper (0 ≤ 𝑦 ≤ ℎ1) and 

lower (−ℎ2 ≤ 𝑦 ≤ 0)regions. The 𝑥-axis is taken in the 

direction of hydrodynamic pressure gradient in the plane 

parallel to the channel plates and 𝑦-axis at right angles to the 

direction of flow. Figure 1 depicts the schematic flow of the 

problem with the origin midway between the two plates. The 

two bounding plates maintained constant temperature 

𝑇𝑤1=𝑇𝑤2. A magnetic field of uniform strength 𝐵𝑜 is assumed 

to be applied transversely to the direction of flow and constant 

electric field 𝐸𝑜 is applied in the 𝑧-direction. The induced 

magnetic field is assumed to be small when compared to an 

applied field, hence it is neglected. The regions are occupied 

by two immiscible electrically conducting, incompressible 

fluids with different densities𝜌1, 𝜌2, viscositiesµ
1
, µ

2
, 

electrical conductivitiesσ1,   σ2,   and thermal conductivities K1, 

K2. 

The dimensional governing equations of motion and  

corresponding boundary conditions [Raju and Rao (2016)] for 

both region I and region II with an inclusion of Darcy-

Forchheimer term in region one are expressed as; 

Region I 

𝜌1
𝜕𝑢1

∗

𝜕𝑡∗ − 𝜇1
𝜕2𝑢1

∗

𝜕𝑦∗2 + 𝜌1𝑉0

𝜕𝑢1
∗

𝜕𝑦∗ +
𝜕𝑝

𝜕𝑥
+ 𝜎1𝑢1

∗𝐵0
2 + 𝜎1𝐸0𝐵0 −

𝜇𝑢1
∗

𝑘
−

𝑏𝑓𝜌
1𝑢1

∗2

𝑘
 = −2𝜌1Ω𝑤1

∗      (1) 

𝜌1
𝜕𝑤1

∗

𝜕𝑡∗
− 𝜇1

𝜕2𝑤1
∗

𝜕𝑦∗2
+ 𝜌1𝑉0

𝜕𝑤1
∗

𝜕𝑦∗
+ 𝜎1𝑤1

∗𝐵0
2 −

𝜇𝑤1
∗

𝑘
−

𝑏𝑓𝜌
1𝑤1

∗2

𝑘
 =

2𝜌1Ω𝑢1
∗                 (2) 

 

𝜌1𝐶𝑝1 [
𝜕𝑇1

𝜕𝑡∗ + V0
𝜕𝑇1

𝜕𝑦∗] − 𝐾1
𝜕2𝑇1

𝜕𝑦∗2 − 𝜇1 [(
𝜕𝑢1

∗

𝜕𝑦∗)
2

+ (
𝜕𝑤1

∗

𝜕𝑦∗ )
2

] −

𝜎1𝑢1
∗2𝐵0

2 − 𝜎1𝐸0
2 = 2𝜎1𝑢1

∗𝐸0𝐵0       (3) 

 

Region II 

𝝆𝟐
𝝏𝒖𝟐

∗

𝝏𝒕∗
− 𝝁𝟐

𝝏𝟐𝒖𝟐
∗

𝝏𝒚∗𝟐
+ 𝝆𝟐𝑽𝟎

𝝏𝒖𝟐
∗

𝝏𝒚∗
+

𝝏𝒑

𝝏𝒙
+ 𝝈𝟐𝒖𝟐

∗ 𝑩𝟎
𝟐 + 𝝈𝟐𝑬𝟎𝑩𝟎 =

−𝟐𝝆𝟏Ω𝒘𝟏   
∗ (4) 

𝝆𝟐
𝝏𝒘𝟐

∗

𝝏𝒕∗
− 𝝁𝟐

𝝏𝟐𝒘𝟐
∗

𝝏𝒚∗𝟐
+ 𝝆𝟐𝑽𝟎

𝝏𝒘𝟐
∗

𝝏𝒚∗
+ 𝝈𝟐𝒘𝟐

∗ 𝑩𝟎
𝟐  = 𝟐𝝆𝟐Ω𝒖𝟐

∗     (5) 

 

𝜌2𝐶𝑝2 [
𝜕𝑇2

𝜕𝑡∗
+ 𝑉0

𝜕𝑇2

𝜕𝑦∗
] − 𝐾2

𝜕2𝑇2

𝜕𝑦∗2
− 𝜇2 [(

𝜕𝑢2
∗

𝜕𝑦∗
)

2

+ (
𝜕𝑤2

∗

𝜕𝑦∗
)

2

] −

𝜎2𝑢2
∗2𝐵0

2 − 𝜎2𝐸0
2 = 2𝜎2𝑢2

∗𝐸0𝐵0   (6) 

where the subscripts 1 and 2 represent quantities for region I 

and region II respectively, 𝑢1, 𝑢2, and 𝑤1, 𝑤2are fluid 

velocities in x-, z-directions respectively known as primary 

and secondary velocity distributions. Ω is the angular 

velocity,  𝑇1 and 𝑇2 are fluid temperatures and 𝑡 is the time. 

The boundary conditions on velocity are considered as the no-

slip conditions at the lower and upper plates. The relevant 

interface conditions are; 

𝑢1
∗(ℎ1) = 𝑤1

∗(ℎ1) = 0, for𝑡 ≥ 0                            (7) 

𝑢2
∗(−ℎ2) = 𝑤2

∗(−ℎ2) = 0                                      (8) 

𝑢1
∗(0) = 𝑢2

∗(0), 𝑤1
∗(0) = 𝑤2

∗(0)                           (9) 

𝜇1
𝜕𝑢1

∗

𝜕𝑦∗
= 𝜇2

𝜕𝑢2
∗

𝜕𝑦∗
𝑎𝑛𝑑𝜇1

𝜕𝑤1
∗

𝜕𝑦∗
= 𝜇2

𝜕𝑤2
∗

𝜕𝑦∗
𝑎𝑡𝑦 = 0        (10) 

 

The thermal boundary and interface conditions on temperature 

for both fluids are given by; 

𝑇1(ℎ1) = 𝑇𝑤                                                            (11) 

𝑇2(−ℎ2) = 𝑇𝑤                                                         (12) 

𝑇1(0) = 𝑇2(0)                                                         (13) 

𝐾1
𝜕𝑇1

𝜕𝑦∗ = 𝐾2
𝜕𝑇2

𝜕𝑦∗ 𝑎𝑡𝑦 = 0                                          (14) 

 

The following non‐dimensional quantities are introduced in 

order to write the governing equations and the boundary 

conditions in dimensionless form,  

𝑃𝑟 =
𝜇𝐶𝑝

𝐾
, 𝑢1 =

𝑢1
∗

𝑢𝑝
, 𝑢2 =

𝑢2
∗

𝑢𝑝
, 𝑤1 =

𝑤1
∗

𝑢𝑝
, 𝑤2 =

𝑤2
∗

𝑢𝑝
, 𝑦 =

𝑦∗

ℎ1
, 𝑡 =

Ʋ𝑡∗

ℎ1
2 ,𝜔 =

ℎ1
2𝜔∗𝜌

𝜇1
, 𝑢𝑝 = (−

𝜕𝑃

𝜕𝑥
)

ℎ1
2

𝜇1
, 𝐷𝑎 =

𝑘

ℎ2 , 𝑀2 =

𝐵0
2ℎ1

2𝜎1

𝜇1
, 𝑅𝑝 =

ℎ1
2Ω

Ʋ1
, ʎ =

ℎ1𝜌1𝑉0

𝜇1
, 𝛼 =

𝜇1

𝜇2
, ℎ =

ℎ2

ℎ1
, 𝜎 =

𝜎2

𝜎1
, 𝛽 =

𝐾1

𝐾2
, 𝜌 =

𝜌2

𝜌1
, 𝑅𝑒 =

𝐸0

𝐵0𝑢𝑝
, 𝜃1 =

𝑇1−𝑇𝑤

𝑢𝑝𝜇1
2

𝐾1

, 𝐹𝑠 =
𝑢𝑝𝑏𝑓

Ʋ
      (15) 

where Pr is  the Prandtl number,  𝑢𝑝 is the characteristic 

velocity,𝑅𝑒 is the electric load parameter, 𝑅𝑝 is the rotation 

parameter, 𝑀2 is the magnetic parameter, 𝐷𝑎 is the Darcy 

number, 𝐹𝑠 is the Forchheimer number, ʎ is the porous 

parameter,𝑘 is the permeability parameter, ω is the frequency 

of oscillation, 𝜃1, 𝜃2are non-dimensional forms of temperature 

distributions of the two fluids, Ω is the angular velocity and 𝛽, 

𝜎, 𝜌 , 𝛼, and ℎ are the ratios of thermal conductivities, 

electrical conductivities, densities, viscosities and heights, 

respectively. 
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With the use of the non-dimensional quantities (15), equations 

(1)-(6), reduce to  

REGION I 

𝜕𝑢1

𝜕𝑡
−

𝜕2𝑢1

𝜕𝑦2 + ʎ
𝜕𝑢1

𝜕𝑦
+ 𝑢1𝑝2 + 𝑝1 − 𝑢1

2𝑝3=−2𝑤1𝑅𝑝
       (16) 

𝜕𝑤1

𝜕𝑡
−

𝜕2𝑤1

𝜕𝑦2 + ʎ
𝜕𝑤1

𝜕𝑦
+ 𝑤1𝑝2 − 𝑤1

2𝑝3=2𝑢1𝑅𝑝
               (17) 

𝜕𝜃1

𝜕𝑡
+ʎ

𝜕𝜃1

𝜕𝑦
− 𝑝0

𝜕2𝜃1

𝜕𝑦2
− 𝑝0 [(

𝜕𝑢1

𝜕𝑦
)

2
+ (

𝜕𝑤1

𝜕𝑦
)

2
] − 2𝑝5𝑢1 −

𝑝5𝑅𝑒 − 𝑝4𝑢1
2 = 0            (18) 

 

REGION II 

𝜕𝑢2

𝜕𝑡
−

𝜕2𝑢2

𝜕𝑦2
+ ʎ

𝜕𝑢2

𝜕𝑦
+ 𝑝6(𝑢2 + 𝑅𝑒) − 𝑝7 = −2𝑝8𝑤2𝑅𝑝    (19) 

𝜕𝑤2

𝜕𝑡
−

𝜕2𝑤2

𝜕𝑦2 + ʎ
𝜕𝑤2

𝜕𝑦
+ 𝑤2𝑝6 = 2𝑝8𝑢1𝑅𝑝        (20) 

𝜕𝜃2

𝜕𝑡
+ʎ

𝜕𝜃2

𝜕𝑦
− 𝑝0

𝜕2𝜃2

𝜕𝑦2
− 𝑝0

𝛽

𝛼
[(

𝜕𝑢2

𝜕𝑦
)

2
+ (

𝜕𝑤2

𝜕𝑦
)

2
] − 𝑝9(𝑅𝑒

2 +

2𝑢2𝑅𝑒 + 𝑢2
2) = 0      (21) 

where 𝑝1 = 𝑀2𝑅𝑒 − 1, 𝑝2 = 𝑀2 −
1

𝐷𝑎
, 𝑝3 =

1

𝐷𝑎
𝐹𝑠 − 1, 𝑝4 =

𝑝0𝑀2,  𝑝5 = 𝑝4𝑅𝑒 ,  𝑝6 = 𝑀2𝜎ℎ2𝛼 

𝑝7 = 𝛼ℎ2, 𝑝8 = 𝜌𝛼ℎ2, 𝑝0 =
1

𝑃𝑟
, 𝑝9 = 𝑝4𝜎ℎ2𝛽 

 

The velocity, temperature and interface conditions in non-

dimensional forms become: 

𝑢1(1)  and 𝑤1(1) = 0,   for 𝑡 ≥ 0                           (22) 

𝑢2(−1) = 0, 𝑤2(−1) = 0                                        (23) 

𝑢1(0) = 𝑢2(0), 𝑤1(0) = 𝑤2(0)                               (24) 
𝜕𝑢1

𝜕𝑦
= (

1

𝛼ℎ
)

𝜕𝑢2

𝜕𝑦
𝑎𝑡𝑦 = 0                                            (25) 

𝜕𝑤1

𝜕𝑦
= (

1

𝛼ℎ
)

𝜕𝑤2

𝜕𝑦
𝑎𝑡𝑦 = 0                                           (26) 

𝜃1(1) = 0, 𝜃2(−1) = 0                                           (27) 

𝜃1(0) = 𝜃2(0)                                                          (28) 
𝜕𝜃1

𝜕𝑦
= (

1

𝛽ℎ
)

𝜕𝜃2

𝜕𝑦
𝑎𝑡𝑦 = 0                                             (29) 

 

Solutions of Problem 

The dimensionless governing equations (16)-(21) in both 

region I and II are to be solved subject to the boundary and 

interface conditions (22) - (29) for the primary and secondary 

velocities, and temperature distributions.ʎ = ε   is considered 

to be a very small term (ε<< 1) and it is used as a perturbation 

parameter . The solutions are assumed in the form: 

𝑢1(𝑦, 𝑡) = 𝑢01(𝑦) + ε𝑒𝑖𝜔𝑡𝑢11(𝑦)                                (30) 

𝑤1(𝑦, 𝑡) = 𝑤01(𝑦) + ε𝑒𝑖𝜔𝑡𝑤11(𝑦)                              (31) 

𝑢2(𝑦, 𝑡) = 𝑢02(𝑦) + ε𝑒𝑖𝜔𝑡𝑢12(𝑦)                                (32) 

𝑤2(𝑦, 𝑡) = 𝑤02(𝑦) + ε𝑒𝑖𝜔𝑡𝑤12(𝑦)                              (33) 

𝜃1(𝑦, 𝑡) = 𝜃01(𝑦) + ε𝑒𝑖𝜔𝑡𝜃11(𝑦)                                 (34) 

𝜃2(𝑦, 𝑡) = 𝜃02(𝑦) + ε𝑒𝑖𝜔𝑡𝜃12(𝑦)                                 (35) 
 

Using equations (30)-(35), the dimensionless governing 

equations (16) – (21) reduce to the following system of 

equations. 

Region I 

For the steady part; 

𝑢01
′′ = ʎ𝑢01

′ +𝑝2𝑢01 − 𝑝3𝑢01
2 + 𝑝1 + 2𝑅𝑝𝑤01             (36) 

𝑤01
′′ = ʎ𝑤01

′ +𝑝2𝑤01 − 𝑝3𝑤01
2 − 2𝑅𝑝𝑢01                     (37) 

𝜃01
′′ =

ʎ

𝑝0

𝜃01
′ − [(𝑢01

′ )2 + (𝑤01
′ )2] −

𝑢01

𝑝0

(2𝑝5 + 𝑝4𝑢01) −
𝑝5𝑅𝑒

𝑝0

  (38) 

  

For the transient time dependent part; 
𝑢11
′′ = ʎ𝑢11

′ +[𝑝2 + 𝑖𝜔]𝑢11 − 2𝑝3𝑢11𝑢01 + 2𝑅𝑝𝑤11             (39) 

𝑤11
′′ = ʎ𝑤11

′ +[𝑝2 + 𝑖𝜔]𝑤11 − 2𝑝3𝑤11𝑤01 − 2𝑅𝑝𝑢11           (40) 

𝜃11
′′ =

ʎ

𝑝0

𝜃11
′ +

𝑖𝜔

𝑝0

𝜃11 − 2[(𝑢01
′ 𝑢11

′ ) + (𝑤01
′ 𝑤11

′ )] − 2𝑝5

𝑢11

𝑝0

− 2
𝑝4

𝑝0

𝑢11𝑢01                            (41) 

 

Region II  

For steady part; 

𝑢02
′′ = ʎ𝑢02

′ +𝑝6[𝑢02 + 𝑅𝑒] − 𝑝7 + 2𝑝8𝑅𝑝𝑤02                (42) 

𝑤02
′′ = ʎ𝑤01

′ +𝑝6𝑤02 − 2𝑝8𝑅𝑝𝑢02                                       (43) 

𝜃02
′′ =

ʎ

𝑝0

𝜃02
′ −

𝛽

𝛼
[(𝑢02

′ )2 + (𝑤02
′ )2] − 𝑝9(𝑢02

2 + 2𝑅𝑒𝑢02 + 𝑅𝑒
2)   (44) 

  

For the transient time dependent part; 

𝑢12
′′ = ʎ𝑢12

′ +[𝑝6 + 𝑖𝜔]𝑢12 + 2𝑝8𝑅𝑝𝑤12                             (45) 

𝑤12
′′ = ʎ𝑤12

′ +[𝑝6 + 𝑖𝜔]𝑤12 − 2𝑝8𝑅𝑝𝑢12                            (46) 

𝜃12
′′ =

ʎ

𝑝0
𝜃12
′ +

𝑖𝜔

𝑝0
𝜃12 − 2

𝛽

𝛼
[(𝑢02

′ 𝑢12
′ ) + 𝑤02

′ 𝑤12
′ ] −

2𝑝9(𝑢02𝑢02 + 𝑅𝑒𝑢12)   (47) 

 

The corresponding boundary and interface conditions on 

velocity and temperature become: 

Steady state; 
𝑢01(1)  𝑎𝑛𝑑 𝑤01(1) = 0, 𝑢02(−1) 𝑎𝑛𝑑 𝑤02(−1) = 0       (48) 

𝑢01(0) = 𝑢02(0), 𝑤01(0) = 𝑤02(0)             (49) 

𝑑𝑢01

𝑑𝑦
= (

1

𝛼ℎ
)

𝑑𝑢02

𝑑𝑦
 𝑎𝑛𝑑 

𝑑𝑤01

𝑑𝑦
= (

1

𝛼ℎ
)

𝑑𝑤02

𝑑𝑦
 𝑎𝑡 𝑦 = 0    (50) 

𝜃01(1)  𝑎𝑛𝑑 𝜃02(−1) = 0, 𝜃01(0) = 𝜃02(0)      (51) 

𝑑𝜃01

𝑑𝑦
= (

1

𝛽ℎ
)

𝑑𝜃02

𝑑𝑦
  𝑎𝑡 𝑦 = 0                              (52) 

 

Transient time dependent; 
𝑢11(1)  𝑎𝑛𝑑 𝑤11(1) = 1, 𝑢12(−1) 𝑎𝑛𝑑 𝑤12(−1) = 0       (53) 

𝑢11(0) = 𝑢12(0), 𝑤11(0) = 𝑤12(0)                               (54) 
𝑑𝑢11

𝑑𝑦
= (

1

𝛼ℎ
)

𝑑𝑢12

𝑑𝑦
 𝑎𝑛𝑑 

𝑑𝑤11

𝑑𝑦
= (

1

𝛼ℎ
)

𝑑𝑤12

𝑑𝑦
 𝑎𝑡 𝑦 = 0    (55) 

𝜃11(1)  𝑎𝑛𝑑 𝜃12(−1) = 0, 𝜃11(0) = 𝜃12(0)                (56) 
𝑑𝜃01

𝑑𝑦
= (

1

𝛽ℎ
)

𝑑𝜃02

𝑑𝑦
  𝑎𝑡 𝑦 = 0                                                   (57) 

 

Adomian Decomposition Method (ADM) 

Adopting the standard decomposition procedure, we introduce 

linear differential operator and its inverse 

𝐿𝑦
2 =

𝑑2

𝑑𝑦2 , 𝐿𝑦
−2(∗) = ∫ ∫ (∗) 𝑑𝑦 𝑑𝑦

𝑦

0

𝑦

0

                     (58) 

𝑢(𝑦) = ∑ 𝑢𝑛(𝑦)
∞

𝑛=0
 , 𝑤(𝑦) = ∑ 𝑤𝑛(𝑦)

∞

𝑛=0
        (59) 

 

It may be convenient to rearrange equations (36) - (47) in 

operational forms as follows,  

𝐿𝑦
2 𝑢𝑖 = 𝑔𝑖(𝑦) + 𝑅𝑢𝑖 + 𝑁𝑢𝑖 ,                 (𝑖 = 1,2)               (60) 

where the left hand side of equation (60) denotes the highest 

order derivative, 𝑔𝑖(𝑦) is the source function, 𝑅𝑢𝑖 is the 

remainder of the linear term with derivative order less than 2, 

while 𝑁𝑢𝑖 are nonlinear terms, equation (36) can be written as  

𝑢′′ = 𝑝1 + ʎ𝑢′ + 𝑝2𝑢 + 2 𝑅𝑝𝑤 − 𝑝3𝑢2                            (61)    

neglecting the subscript (01) for simplicity,  

where (𝑦) = 𝑝1, 𝑅𝑢 = ʎ𝑢′ + 𝑝2𝑢 + 2 𝑅𝑝𝑤, 𝑁𝑢 = −𝑝3𝑢2. 

In an operator form, equation (61) becomes 
𝐿𝑦

2 𝑢(𝑦) = 𝑝1 + ʎ𝑢′ + +𝑝2𝑢 + 2 𝑅𝑝𝑤 − 𝑝3𝑢2                (62)     

 

Applying the inverse𝐿𝑦
−2to both sides of equation (62), to have  

𝐿𝑦
−2𝐿𝑦

2 𝑢(𝑦) = 𝐿𝑦
−2(𝑝1 + ʎ𝑢′ + +𝑝2𝑢 + 2 𝑅𝑝𝑤 − 𝑝3𝑢2) 

𝑢(𝑦) = 𝐿𝑦
−2(𝑝1 + ʎ𝑢′ + +𝑝2𝑢 + 2 𝑅𝑝𝑤 − 𝑝3𝑢2) 
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𝑢(𝑦) = 𝑢(0) + 𝑦𝑢′(0) + 𝑝
𝑦2

2
+ 𝐿𝑦

−2(ʎ𝑢′ + +𝑝2𝑢 + 2 𝑅𝑝𝑤 − 𝑝3𝑢2)         (63) 

 

 

Applying the assumed boundary conditions 𝑢(0) = 𝜑,
𝑢′(0) = 𝛾on equation (63), we 

𝑢(𝑦) = 𝜑 + 𝑦𝛾 + 𝑝
𝑦2

2
+ 𝐿𝑦

−2(ʎ𝑢′ + 𝑝2𝑢 + 2 𝑅𝑝𝑤 − 𝑝3𝑢2)        (64) 

substituting equation (59) into equation (64) to have, 

∑ 𝑢𝑛(𝑦) =

∞

𝑛=0

𝜑 + 𝑦𝛾 + 𝑝
𝑦2

2

+ 𝐿𝑦
−2 [ʎ(∑ 𝑢𝑛

′ (𝑦)

∞

𝑛=0

) + (𝑝2 ∑ 𝑢𝑛(𝑦)

∞

𝑛=0

)

+ (2 𝑅𝑝 ∑ 𝑤𝑛(𝑦)

∞

𝑛=0

) − (𝑝3 ∑ 𝑢𝑛
2(𝑦)

∞

𝑛=0

)] 

i.e 

∑ 𝑢𝑛(𝑦) =∞
𝑛=0 𝜑 + 𝑦𝛾 + 𝑝

𝑦2

2
+

 𝐿𝑦
−2 [

ʎ(∑ 𝑢𝑛
′ (𝑦)∞

𝑛=0 ) + (𝑝2 ∑ 𝑢𝑛(𝑦)∞
𝑛=0 ) +

(2 𝑅𝑝 ∑ 𝑤𝑛(𝑦)∞
𝑛=0 ) − (𝑝3 ∑ 𝐴𝑛(𝑦)∞

𝑛=0 )
]     (65)      

where 𝐴𝑛 is the Adomian polynomial for the non-linear 

term 𝐹(𝑢) which is expressed as; 

∑ 𝐴𝑛

∞

𝑛=0

= 𝑢𝑛
2  

 

It can be evaluated using the general formula 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝛶𝑛 [𝐹 (∑ 𝛶𝑖

𝑛

𝑖=0

𝑢𝑖)]

𝛶=0

     𝑛 = 0,1,2,3 … (66)   

For n ≥ 1, the recursive relation of equation (65 ) takes the 

form 

𝑢𝑛+1 =  𝜑 + 𝑦𝛾 + 𝑝
𝑦2

2
+ 𝐿𝑦

−2(ʎ𝑢𝑛
′ + +𝑝2𝑢𝑛 + 2 𝑅𝑝𝑤𝑛

− 𝑝3𝑢𝑛
2)              (67) 

From equation (67), the initial approximation is  

𝑢0 =  𝜑 + 𝑦𝛾 + 𝑝
𝑦2

2
                                                        (68) 

When 𝑛 = 0,  

𝑢1 = 𝐿𝑦
−2(ʎ𝑢0

′ + 𝑝2𝑢0 + 2 𝑅𝑝𝑤0 − 𝑝3𝑢0
2)                 (69) 

 

Similarly, equations (37) - (47) are transformed into operator 

form as done with equation (36) solving for the general 

recurrence solution as in equation (36) and the set of 

equations are encompassed in a computer algebraic language 

using Mathemtica-16 software package for simulations system 

of equations and then implemented for parametric values of 

the emerging flow parameters. Using the assumed solution in 

equations (30)-(35), the results of the primary and secondary 

velocities with the temperature of region one and two are 

expressed graphically for fixed values (  𝜔 = 0.5,𝜀 =
0.005, 𝐹𝑠 = 1.5, 𝑀2 = 0.2, 𝛽 = 0.5, 𝜎 = 0.5, ℎ = 2, 𝑅𝑒 =
−1, 𝑅𝑝 = 1, 𝜌 = 2, 𝜔𝑡 = 45, 𝑃𝑟 = 4) 

 

The skin friction at the upper plate is given by; 

𝜏𝑢 = [(
𝑑𝑢01

𝑑𝑦
)

𝑦=1

+ 𝜀𝑒𝑖𝜔𝑡 (
𝑑𝑢11

𝑑𝑦
)

𝑦=1

]          (70)  

while at the lower plate is given by:  

𝜏𝑙 = [(
𝑑𝑢02

𝑑𝑦
)

𝑦=1

+ 𝜀𝑒𝑖𝜔𝑡 (
𝑑𝑢12

𝑑𝑦
)

𝑦=1

]         (71)  

 

The heat transfer rate (Nusselt number) at the upper plate is 

given by; 

𝑁𝑢𝑢 = [(
𝜃01

𝑑𝑦
)

𝑦=1

+ 𝜀𝑒𝑖𝜔𝑡 (
𝜃11

𝑑𝑦
)

𝑦=1

]      (72)  

 

The heat transfer rate (Nussel tnumber ) at the lower plate is 

given by; 

𝑁𝑢𝑙 = [(
𝜃02

𝑑𝑦
)

𝑦=1

+ 𝜀𝑒𝑖𝜔𝑡 (
𝜃12

𝑑𝑦
)

𝑦=1

]                (73)  

 

Results and Discussion 

Unsteady two layered conducting fluid flows through a porous 

medium between two parallel plates in a rotating frame has 

been investigated, the resulting differential equations are 

solved using perturbation method with Adomian 

Decomposition method. Solutions for the primary and 

secondary velocities with the temperature profile distributions 

in the two fluid regions, namely 𝑢1, 𝑢2, 𝑤1, 𝑤1and 𝜃1, 𝜃2are 

presented graphically for small value of 𝜀, the coefficient of 

exponent of periodic frequency parameter. In the absence of 

Darcy number and Forchheimer number, the results are in 

agreement with that of Raju and Rao (2016). The 

corresponding profiles are plotted after obtaining the 

computational values for different sets of values of the 

governing parameters involved, such as the Hartmann number 

𝑀2, Taylor number (rotation parameter) 𝑅𝑝, suction number 

(porous parameter) ʎ, ratios of the heights ℎ, Forchheimer 

number 𝐹𝑠. The results are depicted graphically in Figs. 2-18 

for the primary and secondary distributions in Region I and 

Region II. Also, the effects of the coefficient of the skin 

friction and the Nusselt number at the upper and lower plate 

on each governing parameter are shown in Table 1. 

 

Table 1:  Skin friction and Nusselt number at the upper 

plate and lower plate with variation of each dimensionless 

parameter 
𝑷𝒓 𝜺 𝝆 𝑹𝒆 𝜶 𝑴 𝑫𝒂 𝜷 𝑭𝒔 𝝉𝑼 𝝉𝑳 𝑵𝒖𝑼 𝑵𝒖𝑳 

4 0.005 2 3.0 1.00 0.2 1.5 0.5 1.5 2.3030 0.9854 1.8191 5.8252 

4 0.007 2 3.0 1.00 0.2 1.5 0.5 1.5 2.3036 0.9845 1.8183 5.8321 

4 0.009 2 3.0 1.00 0.2 1.5 0.5 1.5 2.3047 0.9827 1.8168 5.8459 

6 0.005 2 3.0 1.00 0.2 1.5 0.5 1.5 2.1111 0.9886 1.0510 5.8269 

8 0.005 2 3.0 1.00 0.2 1.5 0.5 1.5 2.0966 0.9883 1.1524 5.5697 

4 0.005 2.5 3.0 1.00 0.2 1.5 0.5 1.5 2.2765 1.2643 3.0934 10.1240 

4 0.005 3 3.0 1.00 0.2 1.5 0.5 1.5 2.2547 2.1575 4.4891 14.5850 

4 0.005 2 3.5 1.00 0.2 1.5 0.5 1.5 2.2904 0.9738 1.8482 5.7689 

4 0.005 2 4.5 1.00 0.2 1.5 0.5 1.5 2.2711 0.9418 1.9454 5.7548 

4 0.005 2 3.0 1.05 0.2 1.5 0.5 1.5 2.3009 1.0022 1.8690 5.9587 

4 0.005 2 3.0 1.09 0.2 1.5 0.5 1.5 2.3076 1.1267 2.2687 7.3967 

4 0.005 2 3.0 1.00 0.5 1.5 0.5 1.5 2.0140 0.5530 1.9611 3.7394 

4 0.005 2 3.0 1.00 0.6 1.5 0.5 1.5 1.9450 0.4449 2.1500 3.3396 

4 0.005 2 3.0 1.00 0.2 2.0 0.5 1.5 2.3028 0.9891 1.7116 5.5289 

4 0.005 2 3.0 1.00 0.2 3.0 0.5 1.5 2.3112 0.9894 1.6148 5.2803 

4 0.005 2 3.0 1.00 0.2 1.5 0.7 1.5 2.3000 0.9899 2.1371 8.0575 

4 0.005 2 3.0 1.00 0.2 1.5 0.9 1.5 2.3000 0.9899 2.3621 10.3146 

4 0.005 2 3.0 1.00 0.2 1.5 0.5 1.65 2.3040 0.9898 1.8379 5.8158 

4 0.005 2 3.0 1.00 0.2 1.5 0.5 1.75 2.3112 0.9894 1.6148 5.2803 

 

Figures 2 and 10 show the effects of Hartmann number 𝑀2on 

primary and secondary velocities, respectively. Increasing 

Hartmann number 𝑀2, slow down both the primary and 

secondary velocities. It is due to the fact that an increase in 

applied magnetic field strength produces greater interaction 

between the fluid motion and the magnetic field, thereby 

increasing the Lorentz force. This force opposes the buoyancy 

force, causing a reduction in the velocities. 

Figures 3 and 7 demonstrate the effects of varying the porous 

parameter (suction number) ʎ on the primary and secondary 

velocities on the two fluid regions. It is observed that an 

increase in ʎ diminishes the primary and secondary velocity 

distributions in both fluid regions. This is due to the fact that 
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when the suction number increases, the velocity components 

reduce. 

 

 
Fig. 2: Primary velocity profiles for different values of 

Hartmann number 

 

 
Fig. 3: Primary velocity profiles for different values of 

suction parameter 

 

 
Fig. 4: Primary velocity profiles for different values of 

Forchheimer number 𝑭𝒔 

 

 

Figures 4 and 9 show the effects of the Forchheimer number 

𝐹𝑠 on primary velocities and secondary velocities 

respectively. Also, increasing the Forchheimer number 

consequently features a little fall or decrease in the velocity 

profiles. 

The effects of rotation parameter on primary velocity 𝑢 and 

secondary velocity 𝑤 respectively can be seen in Figs. 6 and 

8. From the figures, it is evident that increasing rotation 

parameter caused low rise in velocity profile. The rotation 

parameter 𝑅𝑝 defines the relative magnitude of the Coriolis 

force and the viscous force in the regime. As the high 

magnitude Coriolis forces oppose the buoyancy force, the 

velocity will be decreased as shown in the Fig. 6 and 8. 

Figures 5 and 11 represent the effects of the ratio of heights h 

on primary and secondary velocities, respectively. The higher 

the height, the lower its velocities on both primary and 

secondary velocities profiles on both regions. Fig. 12 

represents the effect of Hartmann number 𝑀2 on the 

temperature profile. From the figure, it is clear that the effect 

of increasing 𝑀2 is to decrease in the temperature profile. The 

effect of rotation parameter on temperature can be seen in Fig. 

13. From the figure, it is evident that the temperature 

decreases with the increase in the rotation parameter. As the 

high magnitude Coriolis forces oppose the buoyancy force, 

the velocity will be decreased leading to a reduction in the 

viscous and Joule dissipation and so to a reduction in the 

temperature. 

Figure 14 demonstrates the effect of varying the porous 

parameter (suction number) on the temperature distribution in 

the two fluid regions. It is observed that an increase in porous 

parameter diminishes the temperature distribution in both 

fluid regions. This is due to the fact that, when the suction 

number increases, the velocity components become thin and 

hence a decrease in temperature distribution. Fig. 15 exhibits 

the effect of varying the thermal conductivity ratio on the 

temperature distribution. It is observed that an increasing 𝛽 

speeds up the temperature distribution in the two fluid regions 

and Figs. 16 and 18 shows the effect of varying viscosity ratio 

and electrical conductivity. It is found that an increase in 

viscosity ratio and electrical conductivity diminishes the 

temperature profiles. 

 

 
Fig. 5: Primary velocity profiles for different values of 

ratio of heights h 

 

 
Fig. 6: Primary velocity profiles for different values of 

rotation parameter 
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Fig. 7: Secondary velocity profiles for different values of 

suction parameter 

 

 
Fig. 8: Secondary velocity profiles for different values of 

Rotation parameter 

 

 
Fig. 9: Secondary velocity for different values of 

Forchheimer number 𝑭𝒔 

 

 
Fig. 10: Secondary velocity for different values of 

Hartmann number 

 

 
Fig. 11: Secondary velocity for different values of ratio of 

heights  

 

 
Fig. 12: Temperature profiles for different values of 

Hartmann number  

 

 
Fig. 13: Temperature profiles for different values of 

rotation parameter 

 

 
Fig. 14: Exhibits the effect of different values of porous 

parameter on temperature distributions on both region 
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Fig. 15: Temperature profiles for different values of ratio 

of thermal conductivity 

 

 
Fig. 16: Temperature profiles for different values of ratio 

of viscosities 

 

 
Fig. 17: Temperature profile for different values of ratio 

of densities 

 

 
Fig. 18: Temperature profiles for different values of ratio 

of electrical conductivities 

 

 

Table 1 shows the magnitude of the coefficient of skin friction 

and the nusselt number at the upper and lower plate due to the 

variations in the basic governing parameters. It can be seen 

that the coefficient of the skin friction at the upper and lower 

plate decreases with an increase in the Hartmann number, 

Prandtl number, electric load parameter and density ratio 

while it increases with an increase in Darcy number and ratio 

of viscosity. Also, the coefficient of skin friction increases at 

the upper plate and decreases at the lower plate due to 

increase in the Forchheimer number meanwhile the ratio of 

thermal conductivity has no effect on the coefficient of skin 

friction. Furthermore the Nusselt number decreases at the 

upper and lower plates with an increase in Prandtl, whereas 

Forchheimer and Darcy numbers increases when ratios of 

density, thermal conductivity and viscosity are increased. 

Moreover, the Nusselt number at the upper plate increases in 

value with an increase in electric load parameter and 

Hartmann number while it decreases at the lower plate. 

 

Conclusion 

The problem of an unsteady magnetohydrodynamic (MHD) 

flow of two layered porous fluids through horizontal channel 

bounded by two parallel porous plates in a rotating frame of 

reference is analyzed theoretically. The analytical solutions of 

the governing equations are evaluated numerically. The 

combined effect of the magnetic field and coriolis force in 

porous channels on the primary, secondary and temperature 

profiles in both the fluid regions are also discussed. It is found 

that an increase in the Hartmann number, suction parameter, 

rotation parameter and Forchheimer number 

(𝑀2, ʎ,  𝑅𝑝and 𝐹𝑠) causes a decrease in the primary, 

secondary velocities and temperature profile in the two 

regions for fixed values of the remaining parameters involved. 

It is observed that as the coriolis forces become stronger, the 

temperature decrease in both fluid regions. It is also seen that, 

an increase in porous parameter diminishes the temperature 

distribution in both regions. It is noticed that the temperatures 

in the two regions increases with an increase in thermal 

conductivities and densities in both regions while temperature 

diminishes as ratio of viscosities increases. 
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